Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580807

RESUMO

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/farmacologia , Staphylococcus epidermidis , Puromicina
2.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542946

RESUMO

Biocatalysis processes based on oxidoreductases, such as fungal laccase, are important for discovering new organic compounds with broad structures and potential applications. They include bioactive compounds, which can be obtained through laccase-mediated oxidation of organic substrates having hydroxyl and/or amino groups especially, e.g., 5-aminosalicylic acid (5-ASA) is characterised for its potential for oxidation by a fungal laccase obtained from a Cerrena unicolor strain. The biotransformation process was optimised in terms of the buffer and co-solvent concentration, buffer pH value, and laccase activity. Selected crude dyes were analysed for their bioactive properties, toxicity, and suitability for the dyeing of wool fibres. The data obtained clearly indicated that a low concentration of the reaction buffer in the pH range from 5 to 6 and in the presence of 10% acetonitrile increased the rate of substrate oxidation and the amount of the product formed. The red-brown compound obtained via laccase-mediated oxidation of 5-aminosalicylic acid showed antioxidant properties and unique antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis strains with the MIC value of 0.125 mg/mL detected for the purest dye. In addition, it was reported to have good wool fibre dyeing properties and no irritant effect after patch tests on a selected group with increased skin sensitivity.


Assuntos
Lacase , Mesalamina , Animais , Lacase/metabolismo , Mesalamina/farmacologia , Oxirredução , Antioxidantes/química , Corantes/química , Concentração de Íons de Hidrogênio
3.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474448

RESUMO

Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Sulfonas , Humanos , Prótese Vascular , Antibacterianos/farmacologia , Biofilmes , Inibidores de Serino Proteinase/farmacologia , Staphylococcus aureus , Materiais Biocompatíveis , Puromicina , Peptídeo Hidrolases
4.
J Funct Biomater ; 14(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504878

RESUMO

Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications.

5.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056804

RESUMO

Fungal laccase obtained from a Cerrena unicolor strain was used as an effective biocatalyst for the transformation of 8-anilino-1-naphthalenesulfonic acid into a green-coloured antibacterial compound, which can be considered as both an antimicrobial agent and a textile dye, simultaneously. The process of biosynthesis was performed in buffered solutions containing methanol as a co-solvent, allowing better solubilisation of substrate. The transformation process was optimised in terms of the buffer pH value, laccase activity, and concentrations of the substrate and co-solvent. The crude product obtained exhibited low cytotoxicity, antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis, and antioxidant properties. Moreover, the synthesised green-coloured compound proved non-allergenic and demonstrated a high efficiency of dyeing wool fibres.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Corantes/química , Corantes/farmacologia , Lacase/metabolismo , Adulto , Idoso , Aliivibrio fischeri/efeitos dos fármacos , Naftalenossulfonato de Anilina/química , Antibacterianos/biossíntese , Antibacterianos/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Biocatálise , Linhagem Celular , Colo/efeitos dos fármacos , Corantes/metabolismo , Corantes/toxicidade , Células Epiteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fungos/enzimologia , Voluntários Saudáveis , Humanos , Hipersensibilidade , Lacase/química , Masculino , Pessoa de Meia-Idade , Oxirredução , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
6.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192097

RESUMO

Novel sustainable processes involving oxidative enzymatic catalysts are considered as an alternative for classical organic chemistry. The unique physicochemical and bioactive properties of novel bio-products can be obtained using fungal laccase as catalyst. Among them are textile biodyes synthesised during oxidation of substrates belonging to the amine and methoxy organic derivatives. The process of synthesis occurs in mild conditions of pH, temperature, and pressure, and without using harmful oxidants. The effect of fungal laccase activity on the substrates mixture transformation efficiency was analysed in terms of antimicrobial dye synthesis on a large scale. Three new phenazine dyes, obtained in the presence of laccase from Cerrena unicolor, were studied for their structure and properties. The phenazine core structure of the products was a result of tri-molecular transformation of aminomethoxybenzoic acid and aminonaphthalene sulfonic acid isomers. One of the compounds from the synthesised dye, namely 10-((2-carboxy-6-methoxyphenyl)amino)-11-methoxybenzo[a]phenazine-8-carboxylic acid, was able to inhibit the growth of Staphylococcus aureus. The high concentration of substrates (5 g/L) was efficiently transformed during 72 h in the mild conditions of pH 4 with the use of laccase with an activity of 200 U per g of the substrates mixture. The new bioactive dye exhibited excellent dyeing properties with concomitant antibacterial and antioxidative activity. The proposed enzyme-mediated synthesis represents an alternative eco-friendly route for the synthesis of novel antimicrobial compounds with high importance for the medical textile industry.


Assuntos
Corantes/química , Corantes/farmacologia , Fungos/enzimologia , Lacase/metabolismo , Têxteis , Antioxidantes/química , Antioxidantes/farmacologia , Biotransformação , Cromatografia Líquida de Alta Pressão , Eletroquímica , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
7.
Biomolecules ; 10(1)2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947983

RESUMO

Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.


Assuntos
Inibidores de Serino Proteinase/química , Inibidores de Serino Proteinase/metabolismo , Inibidores de Serino Proteinase/farmacologia , Antibacterianos/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Candida albicans/efeitos dos fármacos , Endopeptidases , Humanos , Polímeros , Staphylococcus aureus/efeitos dos fármacos , Sulfonas/química , Sulfonas/farmacologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacologia
8.
Postepy Biochem ; 63(4): 261-268, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29374427

RESUMO

From the earliest times, medicine has focused on finding the most suitable and effective treatment for every patient. At present, a dynamic development of diagnostic methods and techniques for designing new drugs allows to create therapies for many diseases at the molecular level. Among the many drugs appearing on the medical market every year, special attention should be paid to those whose action is based on the inhibition of proteolytic enzyme activity. Protease inhibitors are a diverse group of biologically active molecules for which antiviral, antimicrobial, antifungal, antiparasitic or anticancer effects have been documented. Successes in the treatment of HIV infection, hepatitis C and influenza diseases certainly encourage researchers to look for new inhibitors that could be used in new therapies. This paper provides an overview of selected information on enzyme inhibitors, especially protease inhibitors, which are already registered medicines and substances that are promising candidates for medical use.


Assuntos
Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia
9.
Nanomedicine ; 12(4): 1095-1103, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26772425

RESUMO

High antifungal activity is reported, in comparison with commercially available products, of a novel hybrid system based on silver nanoparticles synthesized using a popular antifungal macrocyclic polyene amphotericin B (AmB) acting both as a reducing and stabilizing/capping agent. The synthesis reaction proceeds in an alkaline environment which prevents aggregation of AmB itself and promotes nanoparticle formation. The innovative approach produces monodisperse (PDI=0.05), AmB-coated silver nanoparticles (AmB-AgNPs) with the diameter ~7nm. The products were characterized using imaging (electron microscopy) and spectroscopic (UV-vis and infrared absorption, dynamic light scattering and Raman scattering) methods. The nanoparticles were tested against Candida albicans, Aspergillus niger and Fusarium culmorum species. For cytotoxicity studies CCD-841CoTr and THP-1 cell lines were used. Particularly high antifungal activity of AmB-AgNPs is interpreted as the result of synergy between the antifungal activity of amphotericin B and silver antimicrobial properties (Ag(+) ions release). FROM THE CLINICAL EDITOR: Amphotericin B (AmB) is a common agent used for the treatment against severe fungal infections. In this article, the authors described a new approach in using a combination of AmB and silver nanoparticles, in which the silver nanoparticles were synthesized and stabilized by AmB. Experimental data confirmed synergistic antifungal effects between amphotericin B and silver. This novel synthesis process could potentially be important in future drug development and fabrication.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Micoses/tratamento farmacológico , Nanopartículas/administração & dosagem , Anfotericina B/síntese química , Anfotericina B/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/patogenicidade , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Sistemas de Liberação de Medicamentos , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Humanos , Micoses/microbiologia , Nanopartículas/química , Prata/química , Prata/farmacologia
10.
N Biotechnol ; 33(2): 255-62, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26493406

RESUMO

This study demonstrates the optimisation of the main parameters of the laccase-mediated biosynthesis of high-intensity-coloured orange phenoxazine compound, 2-amino-3-oxo-3H-phenoxazine-8-sulfonic acid, and the antioxidative and dyeing properties. Among optimised parameters were the pH value, the activity of laccase, and the high concentration of the precursor as the necessary step in terms of dye synthesis scale-up. The high concentration of the precursor of ca. 10 g/L can be transformed totally by laccase at the activity of 30 U/g during 12 hours, in an optimised and standardised process in nearly 100% yield of synthesis. The obtained dye exhibited good dyeing properties determined according to the ISO standards. Antioxidative activities were detected for phenoxazinone dye using two independent methods, the chemiluminescence assay and the ABTS free radical-scavenging test, with the values of EC50 for the tested phenoxazine dye amounting 189.8 µg/mL and 1428 µg/mL, respectively. Despite the presence of the phenoxazine core in the structure of this dye, no antibacterial capacity was noted.


Assuntos
Antioxidantes/síntese química , Corantes/síntese química , Proteínas Fúngicas/química , Lacase/química , Oxazinas/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Corantes/química , Escherichia coli/efeitos dos fármacos , Medições Luminescentes , Oxazinas/química , Oxazinas/farmacologia , Polyporaceae/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfanílicos/química
11.
World J Microbiol Biotechnol ; 31(12): 1823-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340934

RESUMO

Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (ß-(1 → 3), ß-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs in different branches of industry, agriculture, and medicine.


Assuntos
Ascomicetos/metabolismo , Basidiomycota/metabolismo , Polissacarídeos Fúngicos/biossíntese , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/metabolismo , Polissacarídeos Fúngicos/farmacologia
12.
World J Microbiol Biotechnol ; 30(12): 3065-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25178492

RESUMO

The secretion of exopolysaccharides and oxalic acid in cultures of a white rot Ganoderma applanatum strain and a brown rot Tyromyces palustris strain were tested in terms of culture time, pH range, and temperature. The high yield of exopolysaccharides (EPS) required a moderate temperature of 28 °C for G. applanatum and 20 °C for T. palustris. G. applanatum and T. palustris accumulated more EPS when the concentration of the carbon source (maltose for G. applanatum and fructose for T. palustris) was 30 g/L. The results indicate that the production of oxalic acid by G. applanatum is correlated with the initial pH value of the culture medium and the concentration of oxalic acid increased to 1.66 ± 0.2 mM at the initial pH of 6.5 during the fungal growth. During the growth of T. palustris, the reduction of the initial pH value of the growing medium lowered the oxalic acid concentration from 7.7 ± 0.6 mM at pH 6.0 to 1.99 ± 0.2 mM at pH 3.5. T. palustris accumulated considerably more oxalic acid than G. applanatum and its presence did not affect significantly the production of exopolysaccharides. We also observed that the maximum amounts of exopolysaccharides secreted during cultivation of G. applanatum and T. palustris were 45.8 ± 1.2 and 19.1 ± 1.2 g/L, respectively.


Assuntos
Coriolaceae/crescimento & desenvolvimento , Coriolaceae/metabolismo , Ganoderma/crescimento & desenvolvimento , Ganoderma/metabolismo , Ácido Oxálico/metabolismo , Polissacarídeos/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...